
Colorer: Syntax Analysis Framework for Source Code
Editors and Integrated Development Environments

Igor Russkih
irusskih at gmail.com

Yuli Ketkov
ket at unn.ru

Nizhny Novgorod State University
23 Gagarin ave.

603950 Nizhny Novgorod, Russia

ABSTRACT
The paper reviews a number of existing solutions for
source code incremental syntax analysis in the Integrated
Software Development Environments (IDE) targeting
software engineer’s efficiency improvements. Colorer
library is presented as an solution in this area for many
of the interaction problems between the developer and
development environment.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools
and Techniques—Program editors; D.2.6 [Software
Engineering]: Programming Environments—Integrated
environments; D.3.2 [Programming Languages]:
Language Classifications—Specialized application languages;
D.3.4 [Programming Languages]: Processors—Parsing ;
H.5.2 [Information Interfaces and Presentation]: User
Interfaces

General Terms
Languages, Algorithms

Keywords
syntax analysis, grammar description, programming
environments

1. INTRODUCTION
Software development today is an active and a valuable
industry. Environments which help and simplify a process
of creation and debugging application’s source code is one
of the most actively developed type of software. All the
popular programming languages are bundled and shipped
with their own multi-functional IDEs, allowing a developer
to easily understand and adapt the target language.

Increased complexity of modern languages, compilers and
architectures requires much more help and automation from

Figure 1: EclipseColorer within the Eclipse IDE

Integrated Development Environments today. IDEs improve
efficiency and speedup a process of programming language
usage and study [7, 11]. Additional program tools like
realtime source code syntax analysis, code construction
highlighting, context dependent assistance and help are the
common and well known parts of any mainstream IDE.

Unfortunately for many task-specific and brand new
programming languages IDE development or even
integration within an existing IDE is a complex and time-
consuming task. This paper presents the Colorer library
— a tool for description and implementation of any
programming language source code editor. Colorer is a
framework for source code fast syntax analysis, visual
highlighting, annotation and structural navigation. It
provides “out of box” support for variety of existing
programming, markup and scripting languages via special
declarative HRC language.

In contrast with regular “multilingual” program text editors
syntax highlighting is only a trivial part of all the
functionality Colorer library provides. Syntax analysis in

Colorer allows to build abstract token trees from source
text and map these tokens with visual attributes (color,
font size, style). Beside this library provides extended
structural text analysis: outline of the program structure,
recursive and paired constructions markup, code folding.
This extra information allows target editing system or IDE
to implement enhanced source code navigation and editing
experience (Fig. 1).

Colorer library is not a complete IDE but a set of services,
framework. It can be easily integrated into the target text
editing environments and provides a set of services based on
incremental syntax analysis of the edited text.

2. RELATED WORKS
Probably, Cornell Program Synthesizer [10] is the one
of the first programming oriented environments which
could be treated as an “IDE”. This system is basically
a structure-oriented editor which allows to construct the
desired program structurally. It uses target language’s
grammar description to generate structure-directed program
editor. Ultimately this allows to exclude syntax errors and
lets an user to concentrate on the program’s logic.

Today pure structure-oriented editors is rare, the idea
basically migrated into the area of visual programming
(UI-constructors, model designers) where target code is
generated automatically.

In general the evolution of editing systems has continued
with pure plain text presentation [9]. The most important
areas of development here now are visual assistance,
background model extraction, realtime incremental code
validation. More and more attention is gained to the
framework environments, libraries, which allows to build
custom source code editors and IDEs, based on common
services and features.

Popular Eclipse platform [4], for instance, provides
a common extensible framework of text editing core
components including text coloring, context assistance,
advanced text decoration and presentation.

This core is extended by a set of language specific
environments. The most advanced and powerful is
Eclipse JDT — a development platform for java language.
The core of this system is a full-featured incremental
java compiler. Complete syntax, semantic analysis and
compilation of full project under development allows
to implement extended assistance features like realtime
syntax errors indication, context dependent text input
assistance and code refactoring. A few other Eclipse-based
environments offer a similar set of functionality. These are
Eclipse CDT, Web Tools, PDP and others.

Although the above system is at most an industrial-level
work, there exist a few academic and research projects,
featuring new ideas in the area of source code editing
and presentation. Barista [5] project makes an accent on
the advanced visualization of the edited text. It presents
and stores text internally within structure-oriented format,
however it doesn’t restrict user from breaking language
grammar rules and allows inconsistent or invalid documents

to be saved.

Internal structured presentation allows system to provide
user with a number of multimedia and visual interactive
features. This is achieved by precise target grammar parser
usage and by grammar rules attribution with particular UI-
related actions. Rather complex target language’s grammar
description and customization limits this system with the
only Java language support.

Another active research project in the area of programming
environments is a Harmonia [1] system. Harmonia chooses
more general approach. It is based on a CF description
of a target language, which is used to generate a common
editing functionality. The resulting partially generated
and partially hand-written target language’s model includes
lexical, syntax and semantic analyzers. Incremental
syntax analysis algorithm supports generated AST in the
consistency with edited text. This allows to implement
rich text editing framework with strong “near-compiler”
validation. Harmonia is one of the most complex systems
in sight of syntax description and implementation. Today it
supports only a few common programming languages.

These and many other source code editing IDEs are at most
support only mainstream languages. Implementation of full-
featured complete support for some new, relatively rare
or specific language is very complex and time consuming
task. This is true even within the usage of the frameworks,
described above.

Modern development environments often do not support
wide set of languages, scripts and markups, falling down
only into particular technology area specifics. But the real
projects under development often include a wider variety
of technologies. Beside the main project language, mixed
language projects are not rare, the mixup happens even in
a single file, like in the template systems — JSP, ASP, PHP
— these include both language and markup with HTML,
CSS, JavaScript and other syntaxes. Project’s building
environment often uses build and other scripts. All this
forces developer to search for a set of editing tools, suitable
for his/her particular needs.

To fulfill this there exist a number of general text
code editors with a ranging set of functionality [3, 13].
The most common feature here is a syntax highlighting.
Some of the text editors provides a scripting support for
compilation/validation, however it is often limited and can’t
be compared with the features IDEs can provide. EMacs [9,
6], VIM, jEdit systems could be noted as the most powerful
in this area. Language syntax and structure analysis are the
important features, implemented in these systems.

3. COLORER LIBRARY OVERVIEW
Colorer library is a set of components, most important
of which are the syntax description language (HRC) and
an incremental syntax analyzer. Description language is
a XML-based declarative syntax, it is used to declare
lightweight regular and context free constructions. Unlike
traditional forms of grammar description (BNF, EBNF),
HRC allows to easily declare important aspects of the
target language without going into the deeps of the formal

grammars.

HRC provides a set of trivial constructions (plain keyword
lists, regular expressions) to define token extraction rules.
With use of a “scheme” concept (also referenced as a context
or non-terminal) it allows easily to describe most of today
language syntaxes.

In addition to these common (and widely used)
constructions, HRC introduces a new concept of scheme
reuse and dynamic redefinition (virtualization). These
concepts basically allows to interpret different language’s
syntax declarations as a linked modules and to reuse syntax
elements in multiple places. Ultimately this leads to a very
compact definition of “mixed” languages, which consume
more and more space in today’s software industry.

The example here is Web-area with the well-known
languages of ASP, PHP, JSP. Mostly all the popular
scripting languages implement today their own templating
systems (including Perl, Ruby etc.) Another area of
combined and mixed syntax is XML group of languages.
XML specification internally allows to mix different
syntaxes within the single document (using a namespace
specification). Moreover, these syntaxes are essentially the
same at the grammar level (they are all XML) — the
difference is on the semantic level. HRC and Colorer easily
handle this by generating grammar declaration directly from
XML Schema definitions.

Colorer’s syntax analyzer allows “on the fly” support of any
mixed syntax, described above. Together with the support
implemented for a great variety of traditional languages, this
makes Colorer library a good choice for the programming
environments extention and improvement.

Today’s software systems may use a variety of programming
languages, configuration scripting, project documentation
in different formats. Colorer allows to implement a support
for all of this inside of a single IDE. This greatly improves
programmer’s experience and productivity since there is no
more need for user to learn a different environment for each
of the used technology or language.

Colorer library has a flexible internal architecture, allowing
to quickly and easily integrate it into the target editor or
IDE. Syntax analyzer output tree is separated from text
storage and is updated on each text modification. Library
requires only a simple interface from the target system
to provide text storage incremental access and a set of
notifications of user actions. This differs Colorer from other
systems, where syntax analyzer is often tightly linked with
editor’s internals.

Syntax analysis output is a tree-like presentation of the
edited text partitioning. It contains a hierarchy of tokens
and contexts which then could be mapped with visual and
structural attributes: color, font, style or program element.
Separation between analysis information and different types
of presentation allows to use colorer in a wide set of
applications. Library’s implementation core is C++, and
it’s available for all hardware platforms. Java and Perl
mappings are also available.

3.1 HRC Language
The basis of syntax analyzer functionality is matching a
sentence in the input language with a set of syntax rules.
And these are essentially describe the target language.
Colorer library uses a special declarative syntax “HRC” [8]
to describe these rules.

The noticeable characteristic of HRC model and Colorer’s
analyzer is “positive” syntax description and parsing. In
comparison with the traditional grammar descriptions HRC
declares the “desired” structure to be found in the target
text. Syntax analyzer then extracts this structure in terms
of regular expressions and schemes and ignores all the
unknown input. It doesn’t fail if an input sentence contains
extra or unknown tokens. Below is a simple HRC grammar
for Ruby language:

<scheme name="ruby">

<block start=’/\#/’ end=’/$/’
scheme=’def:Comment’
region=’Comment’/>

<block start=’/^=begin/’ end=’/^=end/’
scheme=’def:Comment’
region=’CommentDoc’/>

<inherit scheme="def:Number"/>

<block start=’/([\x22\x27\‘])/’ end=’/\y1/’
scheme="String" region=’String’/>

<regexp match=’/ (?{Keyword}alias) \s+
(?{AliasOutline}
\S+ \s+ \S+)/x’/>

<regexp match=’/\M class \s+
(?{ClassOutline}\S+)/x’/>

<keywords region="Keyword">
<word name="BEGIN"/>
<word name="END"/>
<word name="class"/>
<word name="ensure"/>
<word name="nil"/>
<word name="self"/>

...

This syntax declaration can be easily understood by any
person with common knowledge of regular expressions and
XML markup principles.

HRC declarations extend traditional concepts of syntax
analysis with a new model of inheritance, virtualization
and parameterization. Within these new concepts any
HRC scheme (grammar context) can inherit properties and
behavior of any other scheme, even related to the syntax of
another language. Inheritance in HRC is not a blind copy
— thats a dynamic linkage between schemes of different
syntaxes. Inheritance operation can even redefine and
partially modify the behavior of the modified scheme.

All this allows to extremely easy describe a syntax of mixed
and complex languages. HRC separates a description of each
language and at the same time allows to reuse constructions

HTML/XHTML

ASPCore

CSS

XML

XML Schema JavaScript

ASP

VisualBasic

JSP PHP

Java PHPScript

Figure 2: Linked syntaxes within templating
systems

of the already defined language in a new one. In such a way,
for instance, separate definitions of the “Web” syntaxes are
constructed: HTML, CSS, JavaScript, VBasicScript. These
are then combined with traditional languages definitions
(Java, PHP, Perl, etc.), leading to the JSP, PHP, ASP and
others mixed syntax definition (Figure 2).

ASPCore here is a common HRC template, it is essentially a

<scheme name="Insertion">
<block start="/(<\%)/" end="/(\%>)/"

scheme="targetLanguage"
... />

</scheme>
<scheme name="InverseInsertion">

<block start="/((\%>))/" end="/((<\%))/"
scheme="asp"
... />

</scheme>
<scheme name="asp">
<include scheme="Insertion"/>
<include scheme="html:html">
<virtual scheme="html:htmlCore" prolog="Insertion"/>
<virtual scheme="html:htmlString" prolog="Insertion"/>
<virtual scheme="html:html" prolog="Insertion"/>
<virtual scheme="css:Property" prolog="Insertion"/>
<virtual scheme="css:RuleContent" prolog="Insertion"/>
<virtual scheme="css:RulesList" prolog="Insertion"/>
<virtual scheme="def:Comment" prolog="Insertion"/>

<virtual scheme="vbScript:vbScript"
prolog="Insertion"/>

<virtual scheme="vbScript:vbMETA"
subst-scheme="Insertion"/>

<virtual scheme="jScript:jScript"
prolog="Insertion"/>

<virtual scheme="jScript:jsMETA"
subst-scheme="Insertion"/>

<virtual scheme="perl:perl"
prolog="Insertion"/>

<virtual scheme="perl:META"
subst-scheme="Insertion"/>

</include>
</scheme>

This abstract syntax uses a prolog directive to advise
derived scheme execution with ASP specific processing. The
syntax is then extended with the concrete implementation

of a “targetLanguage” scheme stub:

<import type="asp"/>

<scheme name="jScript">
<regexp match="/\/\/.*? \M (\%>|$)/ix"

region="def:Comment"/>
<inherit scheme="InverseInsertion"/>
<include scheme="jScript:jScript"/>

<virtual scheme="jScript:jScript"
subst-scheme="jScript"/>

</include>
</scheme>

<scheme name="asp.js">
<inherit scheme="asp:asp">

<virtual scheme="targetLanguage"
subst-scheme="jScript"/>

</inherit>
</scheme>

HRC inheritance and virtualization are used here to advise a
lower syntax with peculiarities of a new behavior. Many of
other technology areas are described in HRC in a similar
fashion. “C++” is declared as an extended HRC over
the plain “C”, a number of a different Assembler language
syntaxes are derived from the single core.

Another example is a strong HRC support of XML [12]
specification and its derivates. XSLT, XML Schema,
XPath, XQuery — all these are just the most actively
involving applications of XML. Using traditional grammar
descriptions is pointless here — target IDE should support
semantic validation and analysis.

HRC introduces editing support for arbitrary XML with
DTD or XML Schema definition available. This is based
on an automatic XML Schema translation into the HRC
grammar description. This transformation is based on a
Colorer’s XSLT [2] module “xsd2hrc” which allows also a
transformation partial customization. Based on this module
Colorer and HRC mostly automatically provide full-featured
editing support for XHTML, SVG, XSLT 1/2, RelaxNG,
ANT, DocBook, MathML and mostly any XML syntax with
XSD/DTD available.

All these generated HRC declarations support syntax and
semantic validation of XML document’s structure, attribute
types and values validation, document outline and folding
information extraction and other features (see Fig. 3).

3.2 Parser algorithm
Colorer’s syntax analyzer works incrementally based on
source text modification events. It doesn’t build a parse
tree in it’s traditional form. Internal parser’s logic only
stores and updates a partial cache, which is reduced
according to per-line layout of the source. This parse cache
keeps only “between-line” context changes. This allows to
reduce memory usage when running the incremental parser
algorithm.

Distinct parsed tokens are also never saved internally. Parser
uses a “push” model to inform external modules about token
flow and context changes. This model has a number of
practical advantages against a traditional parsing approach,
where parser itself controls the creation and modification of
the parse tree.

Because of the specifics of the final results of parsing in
Colorer, it is much more efficient to allow external librarie’s
client to construct the efficient presentation of the parse tree.
For instance, at most all the editing systems use their own
visual presentation storage implementation. Using Colorer’s
“push” method it is possible to store the parse results directly
in the target system’s presentation model. This gives good
performance and memory usage improvements.

Additional parse tree listeners could be used for any required
information extraction and aggregation. Colorer framework
includes a number of predefined parse tree listeners for
source code structural analysis, code outline creation,
filtered token search, text folding model extraction.

To handle HRC declarations, they are initially transformed
into the internal presentation, suitable for parser’s usage.
The transformation happens during library loading, it
layouts HRC syntax elements in a simplified form to allow
parser to run over them. Some optimizations are also being
held, targeting on syntax elements prediction rules. The
resulting static HRC model tree is used by a parser to build
a parse tree. These two trees are linked and the linkage
information is used to allow incremental text processing.
Incremental analysis uses the information about the links
between parse tree and a model (grammar) tree to recover
from modification events and to provide parse listeners with
the updated tree.

3.3 End-user functionality overview
Colorer framework implements a wide set of end-user
functionality based on the syntax analyzer and HRC
language expressive power. This functionality is delivered to
the end user via the Integrated Development Environment.
Basically IDE’s functionality and flexibility limit, how
deeply the Colorer’s features could be integrated.

One of the actively evolving IDEs now is Eclipse platform,
which is built on concepts of dynamic extensions and
API flexibility. Eclipse provides a powerful commons
to build extended programming editors. These include
different document presentations, structural and outlining
views, powerful annotation framework, folding and of course
a flexible visual presentation management of the edited
document.

Colorer framework links all these features with the source
code analysis information and provides an Eclipse plugin.
This effectively adds a support of more than 150 different
languages and syntaxes, presently defined in HRC.

The basic functionality — syntax highlighting — comes
with a lot of user configurable visual styles. Colorer
also provides an extended document navigation mechanism.
Because of the deep analysis, running via HRC, it detects an
arbitrary paired constructions, starting from trivial bracket

and ending with XML tags matching.

Structure outlining and navigation is also one of the actively
used features. Colorer derives and builds a structure outline
for great number of languages automatically, based on HRC
output analysis.

Many of the languages in HRC include a syntax and
semantic validation. of the parsed document. All the
possible errors are automatically shown in Eclipse editor
with the visual annotation rulers.

Although the Eclipse is one of the most powerful platforms
for IDE construction, Colorer framework usage is not
limited only with this solution. Mostly the same level of
functionality is provided by library’s integration into the
well known shells — FAR Manager (Windows platform)
and Midnight Commander (unix flavors). Although the
code editors in these systems are not as powerful, as in
Eclipse, they still benefit from Colorer library’s wide range
of features.

Another actively evolving area of Colorer usage is a source
code publishing. Colorer is used in a wide set of blogging
and source code browsing Web-engines due to it’s ability to
easily generate HTML-based presentation of parsed code.

4. CONCLUSION & FUTURE WORK
Although Colorer library could be considered as a stable
work, there still exist a wide area of research. The
most important areas are HRC language expressive power,
optimizations targeting HRC pre-compilation and parser’s
code generation.

The area of the end-user experience is also a wide field of
research. This includes researches in compact and efficient
code presentation in a very big and a complex systems,
alternative code presentation approaches.

5. REFERENCES
[1] M. Boshernitsan. Harmonia: A flexible framework for

constructing interactive language-based programming
tools, technical report csd-01-1149, 2001.

[2] J. Clark. XSL Transformations (XSLT). W3C
Recommendation http://www.w3.org/TR/xslt, 1999.

[3] N. Hodgson. Scintilla. http://www.scintilla.org.
[4] IBM and contributors. Eclipse integrated development

environment, http://www.eclipse.org.
[5] A. J. Ko and B. A. Myers. Barista: An

implementation framework for enabling new tools,
interaction techniques and views in code editors. In
CHI 2006 Proceedings, pages 387–396.

[6] C. Rhodes, R. Strandh, and B. Mastenbrook. Syntax
analysis in the climacs text editor, 2005.

[7] T. L. Roberts and T. P. Moran. The evaluation of text
editors: Methodology and empirical results.
Communications of the ACM, April 1983.

[8] I. Russkih. Hrc language reference,
http://colorer.sf.net/hrc-ref/, 2004.

[9] R. M. Stallman. EMACS, The Extensible,
Customizable, Self-Documenting Display Editor.
Massachusetts Institute of Technology, June 1979.

[10] T. Teitelbaum. The cornell program synthesizer: a
syntax-directed programming environment. SIGPLAN
Not., 14(10):75–75, 1979.

[11] R. C. Thomas. Long Term Human-Computer
Interaction. Springer-Verlag, 1998.

[12] J. P. Tim Bray and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0 Second
Edition. W3C Recommendation
http://www.w3.org/TR/2000/REC-xml-20001006,
2000.

[13] S. R. Wood. Z - the 95% program editor. In
Proceedings of the ACM SIGPLAN SIGOA
symposium on Text manipulation, pages 1–7, New
York, NY, USA, 1981. ACM Press.

