
HRC Language Reference
12 January 2010
This version:

take5.be5 (rev2): 12 January 2010
(Available as HTML, PDF, DocBook)

Previous versions:
take5.be5: 26 April 2007
take5.beta4: 28 April 2005
take5.beta4(draft): 19 February 2005
take5.beta3: 30 January 2004
take5.beta2: 12 September 2003
take5.beta1: 30 March 2003
take5.alpha3: 1 March 2003
take5.alpha2: 30 January 2003

Author:
Igor Russkih <irusskih at gmail.com>

Author:
Anatoly Techtonik <techtonik at gmail.com>

Copyright © 2003, 2004, 2005, 2006, 2007, 2010 Igor Russkih (Cail Lomecb)

Abstract

This reference describes HRC language, used in Colorer-take5 Library to define
and represent syntax and lexical structure of various programming languages.
These syntax definitions are used by library to parse and colorize text in editors
and other software.

1

http://colorer.sf.net/hrc-ref/
http://colorer.sf.net/hrc-ref/hrc-ref.zip

Table of Contents
1. Introduction ... 2
2. Basics .. 3

2.1. Syntax processing overview .. 3
2.2. HRC syntax components .. 3
2.3. File Types ... 5
2.4. Namespaces .. 9

3. Scheme syntax .. 9
3.1. Keyword lists ... 12
3.2. Regular Expressions ... 13
3.3. Block context switch .. 14
3.4. Scheme boundaries and priority ... 15

4. Inter-scheme links ... 16
4.1. Inheritance .. 16
4.2. Scheme substitutions .. 17

5. HRC Language Features and Conventions ... 17
5.1. Elements naming .. 17
5.2. Default package feature ... 17
5.3. Coding Recommendations ... 18

A. Regular Expressions syntax ... 19
1. Introduction ... 19
2. Syntax ... 19
3. Metacharacters .. 19
4. Extended metacharacters .. 20
5. Operators ... 21
6. Extended operators .. 22
7. Examples ... 22

B. Format of catalog.xml file .. 23
C. Format of HRD color schemes ... 25
D. XML Schema for HRC Language ... 27
E. History of the changes .. 33
References ... 34

1. Introduction
HRC is a script language which describes text parsing process to produce syntax high-
lighting. It is XML-based language with its own XML vocabulary and structure. HRC
is designed to make the process of describing structures of programming languages
most flexible and efficient.

Looking back to early 1999, HRC had simple XML-like structure describing several
common language constructions. Since then it evolved into very powerful way of de-
scribing complex relations between different languages and syntax contexts. HRC is a

HRC Language Reference

2

full-fledged "XML application" and that means HRC definitions can be automatically
generated from XML descriptions in other languages and converted to other formats
through XSLT templates or other means.

HRC uses Regular Expressions to achieve flexible recognition of text elements, lex-
emes and tokens. Still Regular Expressions (RE) are able to recognise only a limited
set of syntax constructions when it is often necessary to describe more complex struc-
tures. Therefore HRC uses special construct named "scheme" to define behaviour of
more powerful recursive set of languages (context free). Such schemes in combination
with RE make HRC strong declarative language.

2. Basics
2.1. Syntax processing overview

When Colorer starts it reads available HRC files to know what syntax highlight rules
are available and to which files they apply to. HRC file usually contains rules to color-
ize specific content type. Each of these rules is called "scheme" and is defined by XML
<scheme> element. Content types are defined with XML <type> element with "name"
attribute (such as <type name="python">). Schemes for this content type are placed
inside of <type>. HRC syntax allows several <type> elements in HRC file, but usually
only one is included. When colorer knows which type to apply to the given content it
starts processing with <scheme> element that that has the same name as enclosed type
(i.e. <scheme name="python"> will be the "main() function" for the python <type>
above).

Matching <type> to content is made using information from <prototype> element that
contains filename masks and content tests (see below). HRC is very flexible in layout,
and for convenience all prototypes are extracted into main proto.hrc file.

2.2. HRC syntax components
HRC describes and stores syntax rules for numerous languages. All language defini-
tions are divided into two parts:

• informal part includes different non-syntax specific properties of a language: name,
short description, common file extensions and autodetection rules. Informal part is
also called language prototype.

• formal part contains actual definition of target language rules in terms of syntax
and semantics. It is referenced as language type.

Prototypes are used to detect correct language type that should be applied to a file, they
define some application-dependent properties and other useful information about lan-
guages. Because prototypes are separated from real language definitions, full type

HRC Language Reference

3

loading occurs only when language is correctly matched or requested by user. This
guarantees fast library bootstrap. Prototype definitions grouped into one file allow
users to get a quick overview of the languages supported by the library.

Structure. Each HRC file contains either several language prototypes or one language
type. XML content starts with root <hrc> element, which contains all other HRC defin-
itions.

Element: <hrc>
Root of the HRC file XML structure.

Attribute: version, type: xs:NMTOKEN
Specifies version of HRC language. For example, 'take5' for Colorer-take5.

Content:
Element: annotation

Defines formal documentation for the HRC language elements.
Element: prototype

Defines prototype of single target programming language.
Element: package

Defines prototype of the defined file type, but use this type as an internal hid-
den package structure.

Element: type
Language container, used to store all parser specific information.

Every bit of HRC is either XML element or attribute. You can find formal definition of
the HRC XML syntax in Appendix D, XML Schema for HRC Language. For instance,
all HRC files start with the syntax similar to following:

Example 1. Common HRC file

<?xml version="1.0"?>
<!DOCTYPE hrc PUBLIC "-//Cail Lomecb//DTD Colorer HRC take5//EN"
"http://colorer.sf.net/2003/hrc.dtd">

<hrc version="take5" xmlns="http://colorer.sf.net/2003/hrc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://colorer.sf.net/2003/hrc

http://colorer.sf.net/2003/hrc.xsd">
<annotation>
<documentation>
your documentation...
</documentation>
</annotation>

your definitions...

</hrc>

Each element in HRC can be documented with XML Schema-like <annotation>:

HRC Language Reference

4

http://www.w3.org/TR/xmlschema-2#NMTOKEN

Element: <annotation>
Defines formal documentation for the HRC language elements.

Content:
Element: appinfo

Formal annotation part, used for tools processing.
Element: documentation

Human documentation part.
Element: contributors

Contribute information part.

Annotations can be used anywhere in HRC file to describe and document syntax ele-
ments.

2.3. File Types
HRC rules can reuse or import definitions from each other, some languages (like
HTML) may include bits of other languages (i.e. PHP), so HRC files can depend on
each other for correct highlighting. Therefore HRC files are more like one big database
than a bunch of separate definitions. To link them together several syntax elements are
used.

2.3.1. Prototypes

Each language is identified by name and short description. This information is in-
cluded in language prototype. Names are used to reference languages in HRC rules.
Prototypes are usually contained in top level file proto.hrc, but considering flexible
syntax of HRC they could be just everywhere.

Prototypes are defined by <prototype> elements.

Example 2. Prototype definition

<prototype name="cpp" group="main" description="C++">
<location link="base/cpp.hrc"/>
<filename>/\.(cpp|cxx|cc|hpp|h)$/i</filename>
<firstline>/^\s*(\/* | \/\/)/xi</firstline>
<firstline>/\#include/</firstline>
<firstline>/\#define|\#if/</firstline>

</prototype>

The example shows prototype for "C++" language. It contains short description, in-
formation about language group and location of HRC file with formal part of syntax
definition. It also includes RE to identify the language by filename extension and one
or more RE to guess the language by first few lines (or several hundred bytes - depends

HRC Language Reference

5

on implementation) of file contents.

Element: <prototype>
Defines prototype of single target programming language. This prototype
must have name, equals to real type, defined in the linked resource.

Attribute: name, type: xs:NCName
Common internal name of this language type. Must be valid XML non-
qualified name.

Attribute: description, type: xs:string
User description, used to represent language in target IDE.

Attribute: group, type: xs:Name
Group of languages, this language belongs to.

Attribute: targetNamespace, type: xs:anyURI
Applicable to the XML group of languages. Specifies namespace, this HRC
file describing. Allows automatically linking and combining different XML
languages in HRC.

Content:
Element: annotation

Defines formal documentation for the HRC language elements.
Element: location

Points to the location of a HRC file with this language description.
Element: filename

Defines Regular Expression, used to identify programming language by its
file name.

Element: firstline
Defines Regular Expression, used to identify programming language by its
starting content.

Element: parameters
Custom parameters, used to specify additional properties of this language
type.

If language is not specified explicitly library needs to detect it to start syntax highlight-
ing process. This is the purpose of <firstline> and <filename> parameters. Each
matched instance of one of these parameters adds additional weight to the language.
Default amount of points added can be specified explicitly with weight attribute of
these elements. When all weights are calculated, the first language with maximum
weight is selected to highlight the file.

Element: <filename>
Defines Regular Expression, used to identify programming language by its
file name. This can include file's extension or some more complex dependen-
cies.

Attribute: weight, type: xs:decimal, default: 2
This attribute defines weight, added to the total language weight, when choos-

HRC Language Reference

6

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#Name
http://www.w3.org/TR/xmlschema-2#anyURI
http://www.w3.org/TR/xmlschema-2#decimal

ing one from a list of available.

Element: <firstline>
Defines Regular Expression, used to identify programming language by its
starting content. First line can be used, or some small part of text. This entry
has less default weight against filename one.

Attribute: weight, type: xs:decimal, default: 1
This attribute defines weight, added to the total language weight, when choos-
ing one from a list of available.

If any of these two elements is used more than once, each matched instance adds spe-
cified amount to the total weight of a language.

Actual language definition can be separated from its prototype and placed into other
file (or resource). In this case <location> element specifies where to find the definition.
The file or resource specified will not be loaded until language matches and is selected
for highlightning process.

Element: <location>
Points to the location of a HRC file with this language description. Link is a
well formed URI address of the requested HRC file. This location can be rel-
ative to the current location of the parent type, or absolute (with URI schemas,
supported by library). If URI schema is absent, 'file://' is assumed.

Attribute: link, type: xs:anyURI

Element: <parameters>
Custom parameters, used to specify additional properties of this language
type. These can include different language resources (icons, templates and so
on). Also these parameters could be referenced from schema declaration, this
allows to customize schemes loading process.

Content:
Element: param

Single parameter [name,value] pair.

2.3.2. Packages

Some syntax rules are common across various languages and it makes sense to define
them separately and reference from other definitions. These definitions will not be vis-
ible to end users, so they can be thought of as "internal types". Such internal types are
represented by <package> element:

Element: <package>

HRC Language Reference

7

http://www.w3.org/TR/xmlschema-2#decimal
http://www.w3.org/TR/xmlschema-2#anyURI

Defines prototype of the defined file type, but use this type as an internal hid-
den package structure.

Attribute: name, type: xs:NCName
Common internal name of this package. Must be valid XML non-qualified
name.

Attribute: description, type: xs:string
User description, used to represent package in target IDE.

Attribute: targetNamespace, type: xs:anyURI
Applicable to the XML group of languages. Specifies namespace, this HRC
file describing. Allows automatically linking and combining different XML
languages in HRC.

Content:
Element: annotation

Defines formal documentation for the HRC language elements.
Element: location

Points to the location of a HRC file with this language description.

This element doesn't contain <filename> or <firstline> properties, because it doesn't
directly map to any type of file or language. In everything else its behaviour is identic-
al to <prototype> element. Packages can be found in any HRC file including proto.hrc.
For example:

Example 3. Package definition

<package name="def" group="packages" description="basic
definitions">

<location link="default.hrc"/>
</package>
<package name="regexp" group="packages" description="Regexp common

library">
<location link="lib/regexp.hrc"/>

</package>

2.3.3. Types

Type is a formal definition of a language. It is normally contained in a separate file,
which is referenced by <location> element of language prototype. <type> element is
the starting point for parsing process, which holds syntax specific information.

Element: <type>
Language container, used to store all parser specific information. These
defines are used by parser to analyze and colorize target text data.

Attribute: name, type: xs:NCName
HRC Language type name.

HRC Language Reference

8

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#anyURI
http://www.w3.org/TR/xmlschema-2#NCName

Content:
Element: annotation

Defines formal documentation for the HRC language elements.
Element: import

External type import statement.
Element: region

Definition of basic syntax region - text range with assigned syntax meaning.
Element: entity

HRC Entity definition.
Element: scheme

HRC scheme is a basic unit, which represents some fixed set of lexemes,
tokens and syntax regions (lexical context).

Normally, each type is defined in a separate file, which may optionally contain corres-
ponding prototype (if there is no prototype definition in the global repository).

2.4. Namespaces
Each type defines its own name space with its elements. Each element must have
unique identifier (local name) in this namespace, which is used to reference it from
other elements. Within the same type all elements should be unique, but elements with
the same name can belong to different types.

An element can be referenced from the other type with its fully qualified name in form
of typename:elementname. Sometimes there are a lot of inter-type links and use of
qualified names can become a tedious task. To make the job easier HRC language has
<import> statement. It 'imports' all element names from other type into the current.
There can be as many import statements as needed. Unqualified names are resolved in
order of their definition.

Element: <import>
External type import statement. This statement imports all definitions from the
specified type into the current one, so you can use them without explicit type
qualifier.

Attribute: type, type: xs:NCName

For instance, you can write

<import type='def'/>

to import all definitions from the 'def' type. Note, that if several imported types have
some identical local names, they are resolved in order of import statements, i.e. the
first one is used.

3. Scheme syntax

HRC Language Reference

9

http://www.w3.org/TR/xmlschema-2#NCName

Scheme is a generic structure of the HRC language to define syntax of programming
languages. Every scheme contains various syntax elements, matched or not matched as
text analysis goes on. For example, a scheme for "C++" language contains different
keywords, strings, numbers, comments etc. The scheme is defined by <scheme> ele-
ment.

Scheme alone is not very useful for analysis. It is much more convenient to think about
text of a language to be highlighted in terms of regions. When schema matches a piece
of text it can assign various parts of this text to different regions. Each <region>
defines some meaningful part of the syntax. This part or region always has a name and
sometimes a reference to its parent region (if any). When parsed, source text is de-
scribed as a set of these regions with specified positions and lengths.

Next stage of the text processing associates each region with some handler. A handler,
for example, can assign color and font style information to each of the regions or apply
other operations to these structures.

Each region is defined using a <region> element:

Element: <region>
Definition of basic syntax region - text range with assigned syntax meaning.
Later, these regions can be mapped into required color information and dis-
played on screen.

Attribute: name, type: xs:NCName
HRC Region name.

Attribute: parent, type: QName
Region's parent reference. If region has parent, its properties can be inherited
from this one. Also region inheritance creates tree structure of HRC Regions.

Attribute: description, type: xs:string
Optional description, used to represent region's purpose and to show it to user
in convenient and friendly way.

During parsing process each element in a scheme not only creates one or more syntax
<region>s used to highlight parsed text. Resulting information also contains a recurs-
ive scheme tree showing overall text structure.

Each type may define as many schemes as needed provided that all their names are
unique within the type. Scheme is defined using <scheme> element:

Element: <scheme>
HRC scheme is a basic unit, which represents some fixed set of lexemes,
tokens and syntax regions (lexical context). Each time at any position in the
text only one schema is active. Its content is applied to the current text posi-
tion. When the text parsing process starts, the scheme is used whose name
equals the name of the corresponding type (the base scheme of the type).

HRC Language Reference

10

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#string

Attribute: name, type: xs:NCName
HRC Scheme name. Unique in this type scope.

Attribute: if, type: xs:NCName
Load and use this scheme's content only if parameter, to which references this
attribute is truth. In other case this scheme is used as an empty one.

Attribute: unless, type: xs:NCName
Load and use this scheme's content only if parameter, to which references this
attribute is not truth. In other case this scheme is used as an empty one.

Content:
Element: annotation

Defines formal documentation for the HRC language elements.
Element: regexp

Regular Expression token.
Element: block

Context switch operator.
Element: keywords

List of tokens with equal properties.
Element: inherit

Scheme inheritance construction.

Every type is required to have one scheme called "base scheme" which is used as an
entry point for parsing process of the type. Base scheme is named after its type, i.e.
local name of the scheme is equal to the name of the type. Only internal types defined
with <package> element can ignore this requirement because they are never used at the
top level.

Example 4. Sample type definition

<type name="somelang">
<region name="Keyword" description="This language's keyword"/>
<scheme name="somelang">
<keywords region="Keyword">
<word name='word1'/><word name='word2'/>
<word name='otherkeyword'/>

</keywords>
<regexp match="/other(keyword)?/i" region="Keyword"/>

</scheme>
</type>

Scheme element may contain if/unless attributes to customize parsing process accord-
ing to contents of <parameters> definitions in the type of the schema. Parameters can
be flexibly changed at runtime by the means of Colorer API. This allows customizing
load process and suggesting various language profiles to be chosen by user.

The following sections describe different types of syntax elements, available in the

HRC Language Reference

11

http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#NCName
http://www.w3.org/TR/xmlschema-2#NCName

HRC language.

3.1. Keyword lists
<keywords> is the most simple HRC element used to quickly define words with simil-
ar properties and highlight them in a text.

Element: <keywords>
List of tokens with equal properties. Keywords, symbols and so on... These
lists are used to make processing of many tokens faster, when it isn't required
to use RE to define syntax tokens.

Attribute: ignorecase, default: yes
Match this list of tokens with case sensitive or no.

Attribute: region, type: QName
Region, assigned to this list of tokens. Each token can define its custom re-
gion.

Attribute: priority, type: priority, default: low
Priority of any token can be normal and low.

Attribute: worddiv, type: REworddiv
Class of characters, used to search words edges.

Content:
Element: word

Keyword tokens - use specified word edges.
Element: symb

Symbol tokens - ignores specified word edges.

Element: <word>
Keyword tokens - use specified word edges.

Attribute: name, type: xs:string
Attribute: region, type: QName

A pair of type name and valid XML name.

Element: <symb>
Symbol tokens - ignores specified word edges.

Attribute: name, type: xs:string
Attribute: region, type: QName

A pair of type name and valid XML name.

Each element in the list may assign its own region or use region of its parent
<keywords> element. Symbols never check surrounding characters, while words match

HRC Language Reference

12

http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string

only if surrounded by not-word symbols. These word delimiters can be redefined with
worddiv attribute of <keywords>.

3.2. Regular Expressions
Regular expression rules is a powerful and flexible way to define custom syntax struc-
tures. Each RE token can be used to create several different syntax regions (up to 16).
Keep in mind, however, that the scope of every RE in Colorer is limited to one line
(the only exception is <firstline> element matched against several lines to detect file
type).

Element: <regexp>
Regular Expression token.

Attribute: region, type: QName
A pair of type name and valid XML name.

Attribute: priority, type: priority, default: normal
Priority of any token can be normal and low.

Attribute: match, type: REstring
RE syntax

Actual RE is contained within match attribute of <regexp> element. Detailed explana-
tion of Colorer-take5 regular expressions is in Appendix A, Regular Expressions syn-
tax. Each <regexp> can have up to 16 optional attributes named region0, region1, ...
regionf where hexadecimal digit corresponds to the part of RE surrounded by round
brackets counted from left to right. region0 means whole sequence matched by RE
(this can be changed with \m and \M RE metasymbols). The value of each attribute is a
name of the syntax region used to highlight text. Regular Expression can also contain
named brackets what explicitly specify corresponding syntax region in the form of
(?{name} ...).

Each RE definition can include references to any predefined sequence of RE code.
Such references are called entities. Entities are defined in <type> element and have
their own qualified namespace. To include entity's value into RE, special syntax of
%entityname; is used.

Element: <entity>
HRC Entity definition. Entities are some form of macro-definitions, they
lately can be used in regular expressions syntax to make them simpler. Each
entity consists of Entity name and Entity content, which would be substituted
into regular expression, when parser finds entity reference. Each entity can be
referenced with %entityname; syntax.

Attribute: name, type: xs:NCName
HRC Entity name.

Attribute: value, type: REentity
HRC Entity value, used to substitute entity in RE string.

HRC Language Reference

13

http://www.w3.org/TR/xmlschema-2#NCName

Each RE has a priority attribute (by default its value is normal). Priority is mainly used
to detect errors when closing matching region. When everything within the region is
already matched and parser needs to close the block, it applies rule to match closing se-
quence. If match fails then rule with low priority within the block is tested. This is ex-
plained in Section 3.4, “Scheme boundaries and priority”

3.3. Block context switch
Regular expressions are very powerful, but some complex language constructions still
can not be described with their help. For example, syntax elements that allow recur-
sion, i.e. braces inside braces that can be wrapped into each other multiple number of
times. There is also a limitation of Colorer's RE parser that it can not see beyond a
single line of text.

To define more complex syntax structures and context-free grammar constructions
HRC has a special element named <block>.

Element: <block>
Context switch operator. Used to switch currently used context into the spe-
cified one. Context is switched, if RE pattern, placed in 'start' attribute, is
matches. Switched context is closed, when parser finds match of the 'end' RE.

Attribute: start, type: REstring
Regular Expression

Attribute: end, type: REstring
Regular Expression

Attribute: scheme, type: QName
A pair of type name and valid XML name.

Attribute: priority, type: priority, default: normal
Priority of any token can be normal and low.

Attribute: content-priority, type: priority, default: normal
Priority of any token can be normal and low.

Attribute: inner-region, default: no
If set to "yes" then the region of referenced scheme does not include text
matched by start/end attributes. I.e. all the block's regions are located outside
of the scheme region. By default ("no" value) scheme region wraps start/end
tokens of the block and defines background for their own regions.

Content:
Element: start, type: blockInner

Alternative style of RE definition.
Element: end, type: blockInner

Alternative style of RE definition.

Element: <blockInner>

HRC Language Reference

14

Alternative style of RE definition. Could be used, when RE is very complex
and it is easier to use character (or CDATA) sections to define it.

Attribute: match, type: REstring
RE syntax

Each block has <start> and <end> tags, each with the RE syntax already described.
Everything contained within these two marks will be highlighted as a syntax of some
other <scheme>, also pointed by this element's attribute. It is also possible to paint the
portions of these matched tags. Much like <regexp> element - <block> can contain up
to 32 region attributes - region, region00, region01, ... region1f. region0x corresponds
to round brackets of <start> tag, region1x is for <end> tag brackets and region attrib-
ute contains a name of region to paint the whole block. So it is not necessary to define
scheme for assigning region to the whole block, but since scheme is a required attrib-
ute there is a stub empty scheme you can use named def:empty

Using <block> element you can switch context between different highlighting
schemes. This way it is possible to define a great number of different syntax combina-
tions.

3.4. Scheme boundaries and priority
Both regular expressions and block'ed scheme switches work in the same scheme con-
text, and tested against text in the order they defined in HRC. If current text is matched
by several rules, the first rule wins. After successful RE match parse position is in-
creased by the length of that RE. By default the width is calculated from the first
matched symbol till the last inclusive. However it is possible to adjust these boundaries
and shift parse position. This is done with special \m (redefines RE start) and \M
(redefines RE end) metasymbols. It becomes possible to define overlapped elements,
where parsing of the following element starts somewhere in the middle of the previous.

3.4.1. priority

Sometimes a conflict occurs between the rule that closes block (i.e. <end> tag of the
<block> element) and a matching rule inside this block. By default the rule inside
block always wins. But sometimes rule that closes block should take precedence. For
this purpose HRC defines priority attribute for <regexp> and <block> elements. Its
default value is "normal", but if it is changed to "low" then Colorer does not take into
account this element when resolving conflicts upon exit from inner scheme. I.e. in case
of conflict if inner element has lowered priority then <end> tag of the outer <block>
element is used. In case of nested <block> tag, priority attribute affects only conflicts
with its <start> tag. <end> tag of nested block will always take precedence over the
similar <end> tag of enclosing block.

For regular expressions with lowered priority EOL metacharacter $ in case of conflict
matches the end of parent block area. This allows to use low priority to highlight syn-
tax errors.

HRC Language Reference

15

3.4.2. content-priority

Sometimes it is required to dynamically define priority of a child scheme within a
block. With priority attribute it is impossible to change element's priority depending on
a context from where the element is called, because the element will always have the
priority specified. Instead content-priority attribute of a <block> element is used to
change priority for all elements of referenced scheme.

When changed into low it causes all the elements of that scheme to change their prior-
ity to low no matter what is the value of their particular priority attribute.

3.4.3. inner-region

When defining scheme context switch it is possible to set a default region for content
of called scheme through region attribute of <block> element. The region will be used
as a "background" for all other regions defined in that scheme. It is possible to manage
boundaries of this region. Normally the whole scheme's content together with contents
of <start> and <end> tokens is included in this default region. Region starts where
<start> token starts, and ends where <end> token ends.

Sometimes it is desirable to change this behaviour and handle <start> and <end>
tokens (and all the regions they may define) outside of default region of the called
scheme. This could be achieved by setting inner-region attribute to "yes" value. When
set it tells parser to exclude start/end tokens from default region of called scheme by
changing default region boundaries to begin at the end of <start> token and finish just
before <end> token area.

Inner region feature could be used to implement special wrapped areas and in general
can affect special background color treatment.

4. Inter-scheme links
4.1. Inheritance

Element: <inherit>
Scheme inheritance construction. If one scheme is inherited in another, then
the latter scheme takes all the definitions from the former, as it was included
directly in place of inherit operator. One scheme can't inherit another, if that
scheme is already makes inheritance (even indirect) of the first one.

Attribute: scheme, type: QName
Inherited scheme name.

Content:
Element: virtual

Inheritance substitution element.

HRC Language Reference

16

Element: <virtual>
Inheritance substitution element. While inheriting one scheme in another, it is
possible to redefine inner inherited schemes with some others. This can be
used to change inherited language behavior.

Attribute: scheme, type: QName
Redefined scheme.

Attribute: subst-scheme, type: QName
Scheme to use instead redefined one.

4.2. Scheme substitutions

5. HRC Language Features and Con-
ventions

Although HRC itself could be used in an arbitrary way, Colorer-take5 library has a
number of coding and naming conventions for consistency to make maintenance and
expansion of HRC library easier. Features are implemented using special conventions
Colorer library knows about and does extra processing.

5.1. Elements naming
Colorer names are case sensitive. All regions in Colorer-take5 HRC database are
named with capital letter, each name-part also starts with capital letter. For instance:
StringQuote. Any separate type or package is named in lower case and shortened if
possible. So, the full name of a region is written as def:StringQuote.

Scheme names are context dependent and could be used with words in either case.
Dash or Dot delimiter makes them more readable: <scheme
name="Comment.content"> for instance.

All HRC files are named in lower-case with possible Dash or Dot delimiters. External
XML entities should be used to split complex HRC files in parts that simplifies genera-
tion of automatically derived HRC schemes. Entity files carry double ent.hrc exten-
sions to distinguish them from ordinary HRC schemes.

5.2. Default package feature
Colorer-take5 defines a basic set of common syntax regions through special package
named def. Default package simplifies support of HRC database and separates parse
content and its presentation. It is located in hrc/lib/default.hrc. The general purpose of

HRC Language Reference

17

this file is to define a basic set of syntax regions. These regions already have assigned
colors via universal HRD color mappings bundled with Colorer library. All other HRC
regions should be inherited from this set to flexibly define HRD color rules and unify
them across all supported syntaxes and languages. Any HRC package can explicitly
import and use them or define its own syntax regions, derived from the defaults.

5.2.1. Pair construction matching

In addition to coloring rules, Colorer-take5 library uses some naming conventions to
provide such features as pair matching, error lists and file structure outlines. Conven-
tions include several special regions. Paired constructions are defined using
def:PairStart and def:PairEnd. Parsing layout for these regions should be properly
enwrapped in a valid recursive sequence. Using this information Colorer-take5 library
provides user with ability to jump over text blocks in target language and highlight
them during editing process.

5.2.2. Outliner construction

Another feature Colorer-take5 library provides is a tree of valuable syntax tokens in a
text. The tree allows to quickly switch among these tokens in editor. Tokens may rep-
resent programming language's functions, procedures, or any other logical structures of
the text. During parsing process these constructions are collected into a special outline
container, which can present them to user in realtime or by request. Colorer-take5 edit-
or implements two basic forms of outliner: functions and errors list. Any HRC scheme
may define an element with region equal to or derived from def:Outlined. All ele-
ments with this region are considered to be outliner-targeted and are collected during
parsing. Outliner may analyse parse tree structure to generate tree-like text outliners.
Moreover, any language can provide special algorithmic support or logic to implement
parsing for special outlined regions and building valid outline tree. For instance Ec-
lipseColorer editor evaluates a name of each outlined region and searches an icon with
such name. If found, it uses this icon to customize outliner window items with graphic
objects, not only text.

Outliner can generally be set up against any region type. It works as a kind of filter,
gathering only required information from parser. This is a way Errors list works, where
regions derived from def:Error are collected. Every HRC language uses this region to
mark problems it found while parsing text.

5.3. Coding Recommendations
HRC database has a long history, during which the format, syntax and meaning of its
compounds were changed to reach more logical and formal structure. As a con-
sequence there still could be some type definitions, which are not fully comply with
general HRC conventions. In general these include invalid names of packages and re-
gion/schemes. They won't be supported in their current form and will be reworked one
day to become compliant with other HRC definitions.

It may seem a good point to have an import element in HRC, which allows to use ob-

HRC Language Reference

18

jects from other package with unqualified names, but in general this should not be
overused to avoid confusion. It is much more convenient to use fully qualified regions
and scheme names to explicitly show additional package usage/intersections.

A. Regular Expressions syntax
1. Introduction

Colorer library and HRC language rely heavily upon regular expressions (RE). They
allow you to create universal syntax highlighting rules in HRC. The major difference
from other RE engines is that Colorer RE are all limited to one line to make text pro-
cessing faster.

Regular expression consists of a set of characters. Some of these are simple, and some
are special (metacharacters). All metacharacters (escapes) are divided into three cat-
egories: first - zerolength (words boundaries and so on); second - class metacharacters
(\w, \s .); and the third - operators. RE operators can be applied to a single character, to
block, enwrapped in brackets or into other operators. You can use round brackets to
group any sequence of characters. Regular expressions in HRC Language are much
like Perl regexps in their base variant. There are some differences in extended operat-
ors.

2. Syntax
All regexps must be in slashes /.../. After the end slash there can be modifiers:

• i - ignore symbol case

• x - ignore direct spaces and crlf (for comfort)

• s - treat regexp like single line - i.e. make '.' class include \r\n symbols (works only
for <firstline> element) as all other RE can't exceed line boundary

Each symbol in RE is sequentially compared with the target string. Everything that
doesn't look like metacharacter is a simple character. HRC file is also a valid XML
file, therefore quotes in attributes of elements such as <regexp> should be escaped
with entities " or ". Other XML entities inside <regexp> are also expanded and
should be escaped when needed. For example, to match & sequence with your
rule - use &amp; construction.

3. Metacharacters

Table A.1. Metacharacters

HRC Language Reference

19

^ Match the beginning of the line

$ Match the end of the line

. Match any character (except \r\n)

[...] Match any character in set

[^...] Match any character that is not in set.
None of RE operators works here, but you
some metacharacters and range operator
are possible:

a-z stands for all alphabet chars between a
and z,

[{ASSIGNED}-[{Lu}]-[{Ll}]] - unicode
classes reference in RE.
Additional boolean operations:

-[] - Class subtraction.

|[] - Class intersection.

See Unicode RE TR#18 for more informa-
tion.

\# The symbol '#' after slash (except a-z and
1-9)

\b Word break at this point (immediately be-
fore or after any word character)

\B No word break at this point

\xHH, \x{HHHH} HH, HHHH - character code (hex)

\n 0x10 (lf)

\r 0x13 (cr)

\t 0x09 (tab)

\s Whitespace character (tab/space/cr/lf)

\S Not whitespace

\w Word symbol (chars, digits, _)

\W Not word symbols

\d Digit

\D Not Digit

\u Uppercase symbol

\l Lowercase symbol

4. Extended metacharacters

HRC Language Reference

20

http://www.unicode.org/reports/tr18/

These metacharacters are incompatible with Perl

Table A.2. Extended Metacharacters

\c Means 'not word' before

\N Reference from inside of regexp to one of
its brackets. N - the number of brackets
pair. This operator works only with non-
operator symbols in a bracket.

Next operators are only available in Colorer-take5 regexp parser module, when it is
compiled for Colorer library (means that Colorer regex module can be used separ-
ately):

Table A.3. Colorer-take5 Parsing Metacharacters

~ Matches for the start of parent scheme
(end of <start> tag).

\m Changes start of regexp

\M Changes end of regexp

\yN \YN \y{name} \Y{name} Link to the external regexp (in <end>
token to <start> token param). N - re-
quired bracket pair, name - named bracket.

For more information about \m \M meaning see in Section 3.4, “Scheme boundaries
and priority”.

5. Operators
Operators can't be used without some preceding character sequence. Each operator
must be applied to the appropriate character, metacharacter, or their combination en-
closed in brackets.

Table A.4. Operators

() Group and remember characters for later
use.

(?{name}) Group and remember characters using
named group.

(?{}) or (?:) Group characters, but don't remember

HRC Language Reference

21

(unnamed group).

(?{}) Group and remember characters using un-
named uncounted group.

| Alternative. Match previous or next pat-
tern.

* Match preceding pattern 0 or more times.

+ Match preceding pattern 1 or more times.

? Match preceding pattern 0 or 1 time.

{n} Repeat n times.

{n,} Repeat n or more times.

{n,m} Repeat from n to m times.

Question sign ? after operator makes it non-greedy. For example * operator becomes
non-greedy if placing *? Greedy operator tries to eat as many chars in string as pos-
sible. Non-greedy takes minimum.

6. Extended operators

Table A.5. Extended Operators

?#N Look-behind. N - symbol number to look
behind.

?~N Negative look-behind.

?= Look-ahead.

?! Negative Look-ahead.

Note, that two last operators exist in Perl - in form of (?=foobar). But colorer uses syn-
tax (foobar)?=

7. Examples

Example A.1. RE examples

/foobar/ will match "foobar", "foobar barfoo"

/ FOO bar /ix will match "foobar" "FOOBAR" "foobar and two other foos"

HRC Language Reference

22

/(foo)?bar/ will match "foobar", "bar"

/^foobar$/ will match _only_ with "foobar"

/([\d\.])+/ will match any number

/(foo|bar)+/ will match "foofoofoobarfoobar", "bar"

/f[obar]+r/ will match "foobar", "for", "far"

B. Format of catalog.xml file
Catalog for Colorer Library resources is a convenient way to centralize maintenance
and development of all Colorer features. This catalog is stored in catalog.xml file and
mapped into the ParserFactory class. Catalog contains information about all installed
HRC modules, error logging configuration and listing of available HRD sets.

Element: <catalog>
Describes all available Colorer Library resources.

Content:
Element: hrc-sets

Lists all installed root locations of HRC codes.
Element: hrd-sets

Lists all available HRD sets.

Element: <hrc-sets>
Lists all installed root locations of HRC codes. These locations are loaded
when HRC bases are created.

Attribute: log-location, type: xs:string
Path to the default library log file. If missed, there is no logging.

Content:
Element: location

Single resource location.

Element: <hrd-sets>
Lists all available HRD sets. Each HRD Entry describes single color scheme,
used to represent colored text. Note, that one Entry

Content:
Element: hrd, type: hrd-entry

HRC Language Reference

23

http://www.w3.org/TR/xmlschema-2#string

Describes one HRD properties set.

Element: <hrd-entry>
Describes one HRD properties set.

Attribute: class, type: xs:NMTOKEN
HRD class. Currently available 'console', 'rgb' and 'text' classes.

Attribute: name, type: xs:NMTOKEN
Internal name of this set, used to referring from executable codes.

Attribute: description, type: xs:string
User-friendly description of this HRD set.

Content:
Element: location

Single resource location.

Element: <location>
Single resource location. Path can be relative to the catalog location, or abso-
lute URI with or without URI schema specification.

Attribute: link, type: xs:string

<schema targetNamespace="http://colorer.sf.net/2003/catalog"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<element name="catalog" type="catalog"/>

<complexType name="catalog">
<sequence>
<element name="hrc-sets" type="hrc-sets"/>
<element name="hrd-sets" type="hrd-sets"/>

</sequence>
</complexType>

<complexType name="hrc-sets">
<sequence>
<element name="location" type="location" maxOccurs="unbounded"/>

</sequence>
<attribute name="log-location" type="xs:string">
</attribute>

</complexType>

<complexType name="hrd-sets">
<sequence>
<element name="hrd" type="hrd-entry" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>

</complexType>

<complexType name="hrd-entry">
<sequence>
<element name="location" type="location" maxOccurs="unbounded"/>

</sequence>
<attribute name="class" type="xs:NMTOKEN" use="required">

HRC Language Reference

24

http://www.w3.org/TR/xmlschema-2#NMTOKEN
http://www.w3.org/TR/xmlschema-2#NMTOKEN
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string

</attribute>
<attribute name="name" type="xs:NMTOKEN" use="required">
</attribute>
<attribute name="description" type="xs:string">
</attribute>

</complexType>

<complexType name="location">
<attribute name="link" type="xs:string" use="required"/>

</complexType>
</schema>

C. Format of HRD color schemes
HRD files used to assign some editor-specific properties to each HRC Region. Usually
these include color and style information. HRD file is a list of entries each describing
one HRC Region.

Element: <hrd>
List of assigns between regions and their external properties. These properties
commonly include text decoration parameters, such as color, style, font and so
on... Global color layering model can be chosen by the target application, de-
pending on its text presentation style, features and requirements. In general,
all transparent colors inherit color value from its parent schema fill color. If
the current schema is a top-level, default fore- and back-ground colors are
used. Default Colors can be stored in HRD, using standard default region
'def:Text', or can be requested by application from the GUI environment. Note
that color properties are requested from Region's parent (in HRC structure) if
this region is not declared in HRD. However if region was declared but misses
some properties, they are requested from underlying schema fill region which
is determined in runtime.

Content:
Element: documentation

Human documentation part
Element: assign

Single entry, describes region's properties.

Element: <documentation>
Human documentation part

Element: <assign>
Single entry, describes region's properties. If an entry is specified more than
one time, then the latest definition is used. This allows several HRD files to be
processed to complete color description of target HRC regions.

HRC Language Reference

25

Attribute: name, type: region-name
Full qualified region name (a pair [type:name]). Note, that if region has no
HRD properties associations, it inherits properties from its parent. If any of its
ancestors has no assigned properties, region visualization must be skipped (it
becomes fully transparent).

Attribute: fore, type: color
Foreground color. If missed, transparent color assumed.

Attribute: back, type: color
Background color. If missed, transparent color assumed.

Attribute: style, type: style
Style bits (bold, italic, underline).

Attribute: stext, type: xs:string
Text prefix mapping (foreground).

Attribute: etext, type: xs:string
Text prefix mapping (background).

Attribute: sback, type: xs:string
Text Suffix mapping (foreground).

Attribute: eback, type: xs:string
Text Suffix mapping (background).

It is possible to maintain different HRD files for different languages, or to compile
them into one single HRD file. The former allows you to distribute recommended set-
tings with each language, while the latter to unify modification and storage of changed
HRD settings within provided UI.
<schema targetNamespace="http://colorer.sf.net/2003/hrd"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<element name="hrd" type="hrd"/>

<complexType name="hrd">
<sequence>
<element name="documentation" type="documentation"

minOccurs="0"/>
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="assign" type="assign"/>

</sequence>
</sequence>

</complexType>

<complexType name="documentation" mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="skip"/>

</sequence>
</complexType>

<complexType name="assign">
<attribute name="name" use="required" type="region-name">
</attribute>
<attribute name="fore" type="color">
</attribute>

HRC Language Reference

26

http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string
http://www.w3.org/TR/xmlschema-2#string

<attribute name="back" type="color">
</attribute>
<attribute name="style" type="style">
</attribute>
<attribute name="stext" type="xs:string">
</attribute>
<attribute name="etext" type="xs:string">
</attribute>
<attribute name="sback" type="xs:string">
</attribute>
<attribute name="eback" type="xs:string">
</attribute>

</complexType>

<simpleType name="region-name">
<restriction base="xs:string">
<pattern value="\i\c*\:\i\c*"/>

</restriction>
</simpleType>

<simpleType name="color">
<restriction base="xs:string">
<pattern value="#?[\dA-Fa-f]{1,6}"/>

</restriction>
</simpleType>

<simpleType name="style">
<restriction base="xs:string">
<pattern value="\d"/>

</restriction>
</simpleType>

</schema>

D. XML Schema for HRC Language
This XML Schema was automatically generated from the original hrc.xsd source,
available at http://colorer.sf.net/2003/hrc.xsd. All comments and documentation tags
were stripped to achieve more compact format. To use this schema for other than in-
formational purposes use up-to-date version available from the link above.
<schema targetNamespace="http://colorer.sf.net/2003/hrc"
elementFormDefault="qualified"
xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<simpleType name="REstring">
<restriction base="xs:string">
<whiteSpace value="collapse"/>
<pattern value="/.*/[ix]*"/>

</restriction>
</simpleType>

<simpleType name="REworddiv">
<restriction base="xs:string">
<whiteSpace value="collapse"/>
<pattern value="\[.*\]|%.*;"/>

</restriction>
</simpleType>

HRC Language Reference

27

http://colorer.sf.net/2003/hrc.xsd

<simpleType name="REentity">
<restriction base="xs:string">
<whiteSpace value="collapse"/>
<pattern value=".*"/>

</restriction>
</simpleType>

<simpleType name="REstring-or-null">
<union memberTypes="REstring">
<simpleType>
<restriction base="xs:string">
<enumeration value=""/>

</restriction>
</simpleType>

</union>
</simpleType>

<simpleType name="QName">
<restriction base="xs:QName">
<pattern value="(\i\c*:)?\i\c*"/>

</restriction>
</simpleType>

<attributeGroup name="regionX">
<attribute name="region" type="QName"/>
<attribute name="region0" type="QName"/>
<attribute name="region1" type="QName"/>
<attribute name="region2" type="QName"/>
<attribute name="region3" type="QName"/>
<attribute name="region4" type="QName"/>
<attribute name="region5" type="QName"/>
<attribute name="region6" type="QName"/>
<attribute name="region7" type="QName"/>
<attribute name="region8" type="QName"/>
<attribute name="region9" type="QName"/>
<attribute name="regiona" type="QName"/>
<attribute name="regionb" type="QName"/>
<attribute name="regionc" type="QName"/>
<attribute name="regiond" type="QName"/>
<attribute name="regione" type="QName"/>
<attribute name="regionf" type="QName"/>

</attributeGroup>

<element name="hrc" type="hrc"/>

<complexType name="hrc">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="prototype" type="prototype"/>
<element name="package" type="package"/>
<element name="type" type="type"/>

</choice>
</sequence>
<attribute name="version" type="xs:NMTOKEN" use="required">
</attribute>

</complexType>

<complexType name="annotation">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="appinfo">
<complexType mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>

</sequence>

HRC Language Reference

28

</complexType>
</element>
<element name="documentation">
<complexType mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="skip"/>

</sequence>
</complexType>

</element>
<element name="contributors">
<complexType mixed="true">
<sequence minOccurs="0" maxOccurs="unbounded">
<any namespace="##other" processContents="lax"/>

</sequence>
</complexType>

</element>
</choice>

</complexType>

<complexType name="package">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<element name="location" type="location" minOccurs="0"/>

</sequence>
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="description" type="xs:string" use="required">
</attribute>
<attribute name="targetNamespace" type="xs:anyURI">
</attribute>

</complexType>

<complexType name="prototype">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<element name="location" type="location" minOccurs="0"/>
<element name="filename" type="filename" minOccurs="0"

maxOccurs="unbounded"/>
<element name="firstline" type="firstline" minOccurs="0"

maxOccurs="unbounded"/>
<element name="parameters" type="parameters" minOccurs="0"/>

</sequence>
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="description" type="xs:string" use="required">
</attribute>
<attribute name="group" type="xs:Name">
</attribute>
<attribute name="targetNamespace" type="xs:anyURI">
</attribute>

</complexType>

<complexType name="location">
<attribute name="link" type="xs:anyURI" use="required"/>

</complexType>

<complexType name="filename">
<simpleContent>
<extension base="REstring">
<attribute name="weight" type="xs:decimal" default="2">
</attribute>

</extension>
</simpleContent>

</complexType>

HRC Language Reference

29

<complexType name="firstline">
<simpleContent>
<extension base="REstring">
<attribute name="weight" type="xs:decimal" default="1">
</attribute>

</extension>
</simpleContent>

</complexType>

<complexType name="parameters">
<sequence minOccurs="0" maxOccurs="unbounded">
<element name="param">
<complexType>
<attribute name="name" type="xs:string" use="required"/>
<attribute name="value" type="xs:string" use="required"/>
<attribute name="description" type="xs:string"

use="optional"/>
</complexType>

</element>
</sequence>

</complexType>

<complexType name="type">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="annotation" type="annotation"/>
<element name="import" type="import"/>
<element name="region" type="region"/>
<element name="entity" type="entity"/>
<element name="scheme" type="scheme"/>

</choice>
<attribute name="name" type="xs:NCName" use="required">
</attribute>

</complexType>

<complexType name="scheme">
<sequence>
<element name="annotation" type="annotation" minOccurs="0"/>
<choice minOccurs="0" maxOccurs="unbounded">
<element name="regexp" type="regexp"/>
<element name="block" type="block"/>
<element name="keywords" type="keywords"/>
<element name="inherit" type="inherit"/>

</choice>
</sequence>
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="if" type="xs:NCName" use="optional">
</attribute>
<attribute name="unless" type="xs:NCName" use="optional">
</attribute>

</complexType>

<complexType name="import">
<attribute name="type" type="xs:NCName" use="required"/>

</complexType>

<complexType name="entity">
<attribute name="name" type="xs:NCName" use="required">
</attribute>
<attribute name="value" type="REentity" use="required">
</attribute>

</complexType>

<complexType name="region">
<attribute name="name" type="xs:NCName" use="required">

HRC Language Reference

30

</attribute>
<attribute name="parent" type="QName">
</attribute>
<attribute name="description" type="xs:string">
</attribute>

</complexType>

<complexType name="regexp">
<complexContent>
<extension base="blockInner">
<attribute name="region" type="QName"/>
<attribute name="priority" type="priority" default="normal"/>

</extension>
</complexContent>

</complexType>

<simpleType name="priority">
<restriction base="xs:string">
<enumeration value="low"/>
<enumeration value="normal"/>

</restriction>
</simpleType>

<complexType name="block">
<sequence minOccurs="0">
<element name="start" type="blockInner"/>
<element name="end" type="blockInner"/>

</sequence>
<attribute name="start" type="REstring"/>
<attribute name="end" type="REstring"/>
<attribute name="scheme" type="QName" use="required"/>
<attribute name="priority" type="priority" default="normal"/>
<attribute name="content-priority" type="priority"

default="normal"/>
<attribute name="inner-region" default="no">
<simpleType>
<restriction base="xs:string">
<enumeration value="yes"/>
<enumeration value="no"/>

</restriction>
</simpleType>

</attribute>
<attributeGroup ref="regionXX"/>

</complexType>

<attributeGroup name="regionXX">
<attribute name="region" type="QName"/>
<attribute name="region00" type="QName"/>
<attribute name="region01" type="QName"/>
<attribute name="region02" type="QName"/>
<attribute name="region03" type="QName"/>
<attribute name="region04" type="QName"/>
<attribute name="region05" type="QName"/>
<attribute name="region06" type="QName"/>
<attribute name="region07" type="QName"/>
<attribute name="region08" type="QName"/>
<attribute name="region09" type="QName"/>
<attribute name="region0a" type="QName"/>
<attribute name="region0b" type="QName"/>
<attribute name="region0c" type="QName"/>
<attribute name="region0d" type="QName"/>
<attribute name="region0e" type="QName"/>
<attribute name="region0f" type="QName"/>
<attribute name="region10" type="QName"/>
<attribute name="region11" type="QName"/>

HRC Language Reference

31

<attribute name="region12" type="QName"/>
<attribute name="region13" type="QName"/>
<attribute name="region14" type="QName"/>
<attribute name="region15" type="QName"/>
<attribute name="region16" type="QName"/>
<attribute name="region17" type="QName"/>
<attribute name="region18" type="QName"/>
<attribute name="region19" type="QName"/>
<attribute name="region1a" type="QName"/>
<attribute name="region1b" type="QName"/>
<attribute name="region1c" type="QName"/>
<attribute name="region1d" type="QName"/>
<attribute name="region1e" type="QName"/>
<attribute name="region1f" type="QName"/>

</attributeGroup>

<complexType name="blockInner">
<simpleContent>
<extension base="REstring">
<attributeGroup ref="regionX"/>
<attribute name="match" type="REstring">
</attribute>

</extension>
</simpleContent>

</complexType>

<complexType name="inherit">
<sequence>
<element name="virtual" type="virtual" minOccurs="0"

maxOccurs="unbounded"/>
</sequence>
<attribute name="scheme" type="QName" use="required">
</attribute>

</complexType>

<complexType name="virtual">
<attribute name="scheme" type="QName" use="required">
</attribute>
<attribute name="subst-scheme" type="QName" use="required">
</attribute>

</complexType>

<complexType name="keywords">
<choice minOccurs="0" maxOccurs="unbounded">
<element name="word" type="word"/>
<element name="symb" type="symb"/>

</choice>
<attribute name="ignorecase" default="yes">
<simpleType>
<restriction base="xs:string">
<enumeration value="yes"/>
<enumeration value="no"/>

</restriction>
</simpleType>

</attribute>
<attribute name="region" type="QName">
</attribute>
<attribute name="priority" type="priority" default="low"/>
<attribute name="worddiv" type="REworddiv">
</attribute>

</complexType>

<complexType name="symb">
<attribute name="name" type="xs:string" use="required"/>
<attribute name="region" type="QName"/>

HRC Language Reference

32

</complexType>

<complexType name="word">
<attribute name="name" type="xs:string" use="required"/>
<attribute name="region" type="QName"/>

</complexType>
</schema>

E. History of the changes
take5.be5 (rev.2), 12 January 2010 (Anatoly Techtonik)

• Add Section 2.1, “Syntax processing overview”.

• Reworded Section 3.4, “Scheme boundaries and priority” and Section 3.4.1,
“priority”.

• Documented $ behaviour in low-priority blocks.

• Explained XML quoting for <regexp> attributes.

• Minor spelling fixes.

take5.be5, 26 April 2007 (Anatoly Techtonik)

• Many parts of the reference were proofreaded, reworded or clarified. There are still
many ideas for improvements in comments.

• Edits for Section 1, “Introduction” and abstract.

• Core syntax renamed to Section 2, “Basics”.

• Section 2.4, “Namespaces” clarifications.

• Rewritten Section 3.1, “Keyword lists”, RE descriptions, type explanation.

• Disambiguation about language features and conventions in Section 5, “HRC Lan-
guage Features and Conventions”.

• Various DocBook template enhancements (<x:hrc> reference element, ids for ex-
amples and tables, renamed entities, visual style fixes etc.)

• Igor remarks.

HRC Language Reference

33

• Minor fixes.

take5.beta4, 28 April 2005

• New Section 3.4.3, “inner-region” attribute description.

• Minor HRD schema clarifications.

take5.beta4(draft), 19 February 2005

• Clarification of <regexp> and <block> regions usage.

• "Scheme boundaries and priority" explained.

• "HRC Language Coding Conventions" section was added.

References
[XML 1.0] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, Eve Maler, editors.

Extensible Markup Language (XML) 1.0 Second Edition. W3C (World Wide
Web Consortium), 2000.

[XSLT 1.0] James Clark, editor. XSL Transformations (XSLT) 1.0. W3C (World Wide
Web Consortium), 1999.

[W3C XML Schema Structures] Henry S. Thompson, David Beech, Murray Maloney,
Noah Mendelsohn, editors. XML Schema Part 1: Structures. W3C (World
Wide Web Consortium), 2001.

[W3C XML Schema Datatypes] Paul V. Biron, Ashok Malhotra, editors. XML Schema
Part 2: Datatypes. W3C (World Wide Web Consortium), 2001.

HRC Language Reference

34

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

	HRC Language Reference
	Table of Contents
	1. Introduction
	2. Basics
	2.1. Syntax processing overview
	2.2. HRC syntax components
	2.3. File Types
	2.3.1. Prototypes
	2.3.2. Packages
	2.3.3. Types

	2.4. Namespaces

	3. Scheme syntax
	3.1. Keyword lists
	3.2. Regular Expressions
	3.3. Block context switch
	3.4. Scheme boundaries and priority
	3.4.1. priority
	3.4.2. content-priority
	3.4.3. inner-region

	4. Inter-scheme links
	4.1. Inheritance
	4.2. Scheme substitutions

	5. HRC Language Features and Conventions
	5.1. Elements naming
	5.2. Default package feature
	5.2.1. Pair construction matching
	5.2.2. Outliner construction

	5.3. Coding Recommendations

	A. Regular Expressions syntax
	1. Introduction
	2. Syntax
	3. Metacharacters
	4. Extended metacharacters
	5. Operators
	6. Extended operators
	7. Examples

	B. Format of catalog.xml file
	C. Format of HRD color schemes
	D. XML Schema for HRC Language
	E. History of the changes
	References

